Influence of the Effect of Strain Rates on Springback in Aluminum 2024 (ISO AlCu4Mg1)
Pravin Kulkarni Forming of aluminum sheets in T-temper is a much sought after industrial process, especially in the aircraft industry. However, the success of this process largely hinges on the ability to predict springback accurately. Aluminum sheets in T-temper exhibit approximately twenty percent variability in material properties and also the amount of springback is very large. This makes tool design for aluminum in T-temper an iterative and difficult to control process. Traditionally aluminum has been formed in the O-temper and then heat-treated to T–temper, as recourse to reduce springback. This research is aimed at developing a predictive finite element technique for springback, using experimental validation. A parametric study was conducted to determine the influence of geometric parameters and tempers on springback. The study characterizes springback of aluminum in different tempers and investigates the effect of forming strain-rates on springback. The study focuses on springback in Aluminum 2024 using hydroforming process.
https://www.dynamore.ch/en/downloads/papers/03-conference/metal-forming/influence-of-the-effect-of-strain-rates-on/view
https://www.dynamore.ch/@@site-logo/DYNAmore_Logo_Ansys.svg
Influence of the Effect of Strain Rates on Springback in Aluminum 2024 (ISO AlCu4Mg1)
Pravin Kulkarni Forming of aluminum sheets in T-temper is a much sought after industrial process, especially in the aircraft industry. However, the success of this process largely hinges on the ability to predict springback accurately. Aluminum sheets in T-temper exhibit approximately twenty percent variability in material properties and also the amount of springback is very large. This makes tool design for aluminum in T-temper an iterative and difficult to control process. Traditionally aluminum has been formed in the O-temper and then heat-treated to T–temper, as recourse to reduce springback. This research is aimed at developing a predictive finite element technique for springback, using experimental validation. A parametric study was conducted to determine the influence of geometric parameters and tempers on springback. The study characterizes springback of aluminum in different tempers and investigates the effect of forming strain-rates on springback. The study focuses on springback in Aluminum 2024 using hydroforming process.