Comparison of Crash Models for Ductile Plastics
There is interest in quantifying the value of different material models being used in LS-DYNA today for the modeling of plastics. In our study, we characterize two ductile, yet different materials, ABS and polypropylene, for rate-dependent tensile properties, and we use the data to develop material parameters for the material models commonly used for plastics: MAT_024 and its variants, MAT_089 and MAT_181. We then perform a falling dart impact test, which produces a complex multi-axial stress state, and we simulate this experiment using LS-DYNA. For each material model, we are able to compare simulation to actual experiment, thereby obtaining a measure of fidelity of the simulation to reality. In this way, we can assess the benefits of using a particular material model for plastics simulation.
https://www.dynamore.ch/de/download/papers/2015-ls-dyna-europ/documents/sessions-h-1-4/comparison-of-crash-models-for-ductile-plastics/view
https://www.dynamore.ch/@@site-logo/DYNAmore_Logo_Ansys.svg
Comparison of Crash Models for Ductile Plastics
There is interest in quantifying the value of different material models being used in LS-DYNA today for the modeling of plastics. In our study, we characterize two ductile, yet different materials, ABS and polypropylene, for rate-dependent tensile properties, and we use the data to develop material parameters for the material models commonly used for plastics: MAT_024 and its variants, MAT_089 and MAT_181. We then perform a falling dart impact test, which produces a complex multi-axial stress state, and we simulate this experiment using LS-DYNA. For each material model, we are able to compare simulation to actual experiment, thereby obtaining a measure of fidelity of the simulation to reality. In this way, we can assess the benefits of using a particular material model for plastics simulation.